Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Case Report
Case Series
Editorial
Guest Editorial
Invited Editorial
Letter to Editor
Notice of Retraction
Obituary
Original Article
Review Article
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Case Report
Case Series
Editorial
Guest Editorial
Invited Editorial
Letter to Editor
Notice of Retraction
Obituary
Original Article
Review Article
View/Download PDF

Translate this page into:

Editorial
6 (
1
); 1-2
doi:
10.4103/joas.joas_21_18

Oblique lumbar interbody fusion

Director, Spine Ortho Clinic, Victoria, Australia
Department of Spine Surgery, Dr. L. H. Hiranandani Hospital, Mumbai, Maharashtra, India

Address for correspondence: Dr. John Choi, Spine Ortho Clinic, Victoria, Australia. E-mail: john.choi@spineortho.com.au

Licence
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
Disclaimer:
This article was originally published by Wolters Kluwer - Medknow and was migrated to Scientific Scholar after the change of Publisher.

How to cite this article: Choi J, Singh PK. Oblique lumbar interbody fusion. J Orthop Allied Sci 2018;6:1-2.

Lumbar interbody fusion is a standard procedure for the management of various spinal diseases such as lumbar degenerative disc disease and spinal deformities and other conditions including trauma and infections. Currently, anterior lumbar interbody fusion (ALIF), posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion are widely practiced. Recently, lateral lumbar interbody fusion which utilizes access to the disc via transmuscular interval through the psoas has gained significant popularity due to minimal tissue disruption and minimal blood loss. However, several unique sets of complications and potential hazards have been identified and reported. In order to mitigate these risks, a novel approach which utilizes a bare area between the great vessels and the psoas muscle known as the “oblique corridor” has been coined the term oblique lumbar interbody fusion (OLIF).

OLIF or sometimes known as anterior to psoas has provided solutions to the approach morbidity such as potential neural plexus injury, psoas weakness, transient leg numbness, as well as select difficult anatomy cases, i.e., Mickey Mouse psoas, high iliac crest, and transitional anatomy.

OLIF can obtain adequate operating space via retroperitoneal plane and docking the tubular retractor anterior to psoas muscle and reflecting the muscle from the annulus if needed. This space is fairly constant between L2 and L5, which always increases from supine to lateral positioning of the patient. Usually, there is no need for posterior retraction of the psoas muscle and therefore does not require neuromonitoring.[1]

OLIF at L5/S1 takes a different approach window; it utilizes the space between the common iliac vessels which is the interval used in ALIF. The OLIF surgery takes the same plane and procedural steps as ALIF. The key step is the mobilization of common illiac vessels and securing adequate operative window for the interbody fusion.[2] A growing body of evidence is being gathered and it appears to carry similar or less approach-related morbidity with similar efficacy as a traditional supine ALIF.

One of the key attractions for OLIF is the indirect decompression of the spinal canal. As reported by Fujibayashi et al.,[3] one can achieve 19.0%–30.2% increase in cross-sectional area of thecal sac and 61.0%–82.3% increase in disc height after OLIF. This serves as a boon in cases of foraminal stenosis and mild-to-moderate central canal stenosis with instability, whereby excellent results can be achieved with minimal morbidity. Similarly, even in cases of rigid and severe degenerative deformities, OLIF alleviates the need for Ponte osteotomies and pedicle subtraction osteotomies. It has been shown to provide excellent correction of sagittal and coronal parameters in these elderly patients where blood loss and complications lead to suboptimal surgical outcomes.[4] It is worthwhile to mention the expedited and high fusion rates[5] achieved with OLIF even in these difficult patients in challenging situations.

However, OLIF has its own unique set of approach-related morbidity and complications and has been reported in the literature: ureteric injury, abdominal vessel injury, the peritoneum breach and its contents, as well as potential injury to neurological structures such as sympathetic chain, genitofemoral nerve, hypogastric nerve plexus, as well as nerve roots.[6,7]

OLIF is a relatively new procedure, and there is a paucity of high-quality literature which limits the widespread acceptance among spine surgeons. Nonetheless, the benefits of OLIF surgery are being substantiated and refinement of surgical techniques and dedicated instruments/implants (Acceloc O-AL, L&K Biomed Co., Ltd., Seoul, South Korea) is paving the way to mitigate the risks and further improve outcomes and applicability of the surgery. Future studies are required to validate these perceived benefits and early experiences of OLIF surgery.

REFERENCES

  1. , , . Retroperitoneal oblique corridor to the L2-S1 intervertebral discs: An MRI study. J Neurosurg Spine 2015:1-8.
    [CrossRef] [PubMed] [Google Scholar]
  2. , , , , , , . Mini-open oblique lumbar interbody fusion (OLIF) approach for multi-level discectomy and fusion involving L5-S1: Preliminary experience. Orthop Traumatol Surg Res. 2017;103:295-9.
    [CrossRef] [PubMed] [Google Scholar]
  3. , , , , , , . Effect of indirect neural decompression through oblique lateral interbody fusion for degenerative lumbar disease. Spine (Phila Pa 1976). 2015;40:E175-82.
    [CrossRef] [PubMed] [Google Scholar]
  4. , , , , . Lumbar interbody fusion: Techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1:2-18.
    [Google Scholar]
  5. , , . Fusion Rates in OLIF with BMP and Allograft. Spine Society of Australia; 2018
    [Google Scholar]
  6. , , , . Outcomes of anterior lumbar interbody fusion surgery based on indication: A prospective study. Neurosurgery. 2015;76:7-23.
    [CrossRef] [PubMed] [Google Scholar]
  7. , . Early and Midterm Complications in Consecutive 128 OLIF Patients (L1 to S1) Sapporo, Japan: PASMISS; .
    [Google Scholar]

Fulltext Views
135

PDF downloads
58
View/Download PDF
Download Citations
BibTeX
RIS
Show Sections